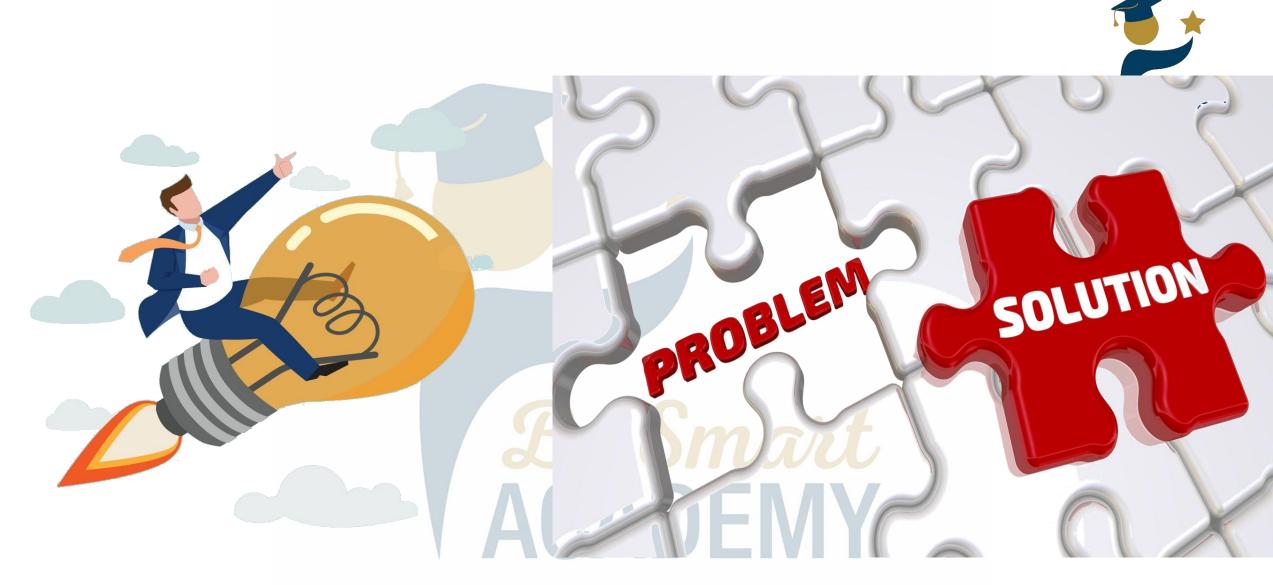


Grade 12 LS – Physics

Chapter 10 -A

Capacitor with a L.F.G of square signal

Prepared & Presented by: Mr. Mohamad Seif

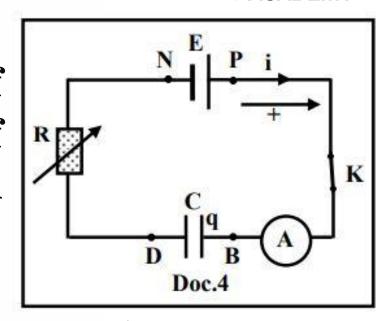


Think then Solve

To determine the capacitance C of a capacitor We set-up

the series circuit of (Doc 4).

This circuit includes: an ideal battery of electromotive force E = 10 V; a rheostat of resistance R; a capacitor of capacitance C; an ammeter and a switch K.



Initially the capacitor is uncharged. We close the switch K at the instant $t_0 = 0$.

At an instant t, plate B of the capacitor carries a charge q and the circuit carries a current i as shown in doc 4.

- Be Smart ACADEMY
- 1. Write the expression of i in terms of C and u_C , where u_C
 - $=u_{BD}$ is the voltage across the capacitor.
- 2. Establish the differential equation that governs the variation of $u_{\mathcal{C}}$.
- 3. The solution of the differential equation is: $u_C = a + b \cdot e^{-\frac{\tau}{\tau}}$. Determine the expressions of the constants a, b and τ in terms of E, R and C.
- 4. Deduce that the expression of the current is: $i = \frac{E}{R}$. $e^{-\frac{t}{RC}}$.
- 5. The ammeter indicates $I_0 = 5mA$ at $t_0 = 0$. Deduce the value of R.

Be Smart ACADEMY

1. Write the expression of i in terms of C and u_C , where

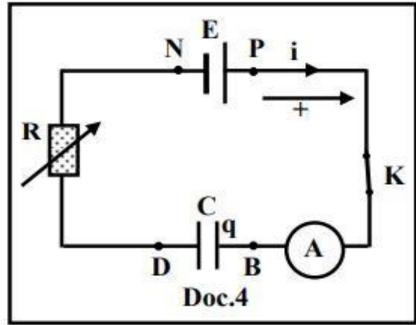
 $u_C = u_{BD}$ is the voltage across the capacitor.

$$i = \frac{dq}{dt}$$

But
$$q = C.u_c$$

$$i = \frac{dC.u_C}{dt}$$
 Be Smarl ACADEM

$$i = C \frac{du_0}{dt}$$



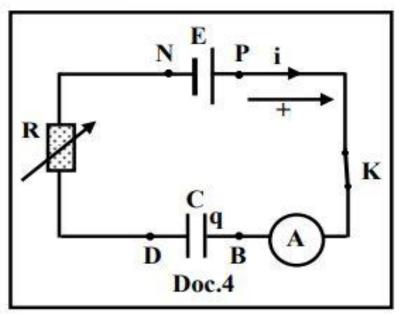
variation of $u_{\mathcal{C}}$.

2. Establish the differential equation that governs the

Using law of addition of voltages in series:

$$u_G = u_C + u_R$$

$$\mathbf{E} = \mathbf{u}_{C} + \mathbf{R}\mathbf{i}$$



$$\mathbf{E} = \mathbf{u}_C + \mathbf{R}C \frac{d\mathbf{u}_C}{dt}$$

Determine the expressions of the constants a, b and τ in

terms of E, R and C.

$$u_C = \mathbf{a} + \mathbf{b}e^{-\frac{t}{\tau}}$$

$$rac{du_{\mathcal{C}}}{dt} = -rac{b}{ au}e^{-rac{t}{ au}}$$

$$\mathbf{E} = \boldsymbol{u}_{\boldsymbol{C}} + \boldsymbol{R}\boldsymbol{C}\frac{d\boldsymbol{u}_{\boldsymbol{C}}}{dt}$$

$$\mathbf{E} = \mathbf{a} + be^{-\frac{t}{\tau}} - \mathbf{RC} \cdot \frac{b}{\tau} e^{-\frac{t}{\tau}}$$

$$0 = -E + a + be^{-\frac{t}{\tau}} - RC.\frac{b}{\tau}e^{-\frac{t}{\tau}}$$

$$\mathbf{A} = \mathbf{E} + \mathbf{A} + be^{-\frac{t}{\tau}} \left[1 - \frac{RC}{\tau} \right]$$

$$\mathbf{0} = -\mathbf{E} + \mathbf{a} + \mathbf{b}e^{-\frac{t}{\tau}} \left[\mathbf{1} - \frac{RC}{\tau} \right]$$

$$-\mathbf{E} + \mathbf{a} = \mathbf{0}$$

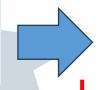
$$a = E$$

$$1-\frac{RC}{\tau}=0$$

$$\frac{1}{1} = \frac{RC}{\tau}$$

Be Smart CADEMY $\tau = RC$

$$u_C = a + b.e^{-\frac{t}{\tau}}$$



At t = 0; $u_c = 0$

$$\mathbf{0} = \mathbf{E} + \mathbf{b}.\,\mathbf{e}^{-\frac{0}{RC}}$$

$$\mathbf{0} = \mathbf{E} + \mathbf{b}.\,\mathbf{e}^{\mathbf{0}}$$

$$0 = \mathbf{E} + \mathbf{b}$$

$$\mathbf{b} = -\mathbf{E}$$

$$u_C = E - E.e^{-\frac{t}{RC}}$$

 $ADE_{uc} = \frac{t}{RC}$

4. Deduce that the expression of the current is: $i = \frac{E}{R}$. $e^{-\frac{t}{RC}}$.

$$u_C = E - E.e^{-\frac{t}{RC}}$$

$$i = C.\frac{du_C}{dt}$$

$$i = C \cdot (\frac{E}{RC} \cdot e^{-\frac{t}{RC}})$$

$$\frac{du_C}{dt} = \frac{E}{RC} \cdot e^{-\frac{t}{RC}}$$

DEMI =
$$\frac{E}{R} \cdot e^{-\frac{t}{RC}}$$

Be Smart ACADEMY

5. The ammeter (A) indicates a value $I_0 = 5$ mA at $t_0 = 0$.

Deduce the value of R.

$$i = \frac{E}{R} \cdot e^{-\frac{t}{RC}}$$

At
$$t_0 = 0$$
; $I_0 = 5 \times 10^{-3} A$

$$I_0 = \frac{E}{R} \cdot e^{-\frac{0}{RC}} ACA$$

$$I_0 = \frac{E}{R}$$

$$R = \frac{E}{I_0}$$

$$\frac{\text{Smart}}{\text{DEWR}} = \frac{10}{5 \times 10^{-3}}$$

$$R = 2000\Omega$$

6. Write the expression of $u_R = u_{DN}$ in terms of E, R, C and t.

- 7. At an instant $t = t_1$, the voltage across the capacitor is $u_C = u_R$.
- a. Show that $t_1 = RC$. ln2.
- b. Calculate the value of C knowing that $t_1 = 1.4ms$.

Be Smart ACADEMY

6. Write the expression of $u_R = u_{DN}$ in terms of E, R, C and t.

Using ohm's law of resistor

$$u_{R} = R.i$$
 $u_{R} = R.\frac{E}{R}.e^{-\frac{t}{RC}}$
 $ACADEMY$
 $u_{R} = E.e^{-\frac{t}{RC}}$

7. At an instant $t = t_1$, the voltage across the capacitor is $u_C = u_R$.

a. Show that $t_1 = RC$. ln2.

$$egin{aligned} oldsymbol{u}_{C} &= oldsymbol{u}_{R} \ oldsymbol{E} - oldsymbol{E} e^{-rac{t_{1}}{RC}} &= oldsymbol{E}.\,e^{-rac{t_{1}}{RC}} \end{aligned}$$

$$E = +E.e^{-\frac{t_1}{RC}} + E.e^{-\frac{t_1}{RC}}$$

$$E = 2E.e^{-\frac{t_1}{RC}}$$

$$1=2.e^{-\frac{t_1}{RC}}$$

$$Ln(1) = Ln(2.e^{-\frac{t_1}{RC}})$$

$$0 = Ln2 + Ln(e^{-\frac{l_1}{RC}})$$

$$0 = Ln2 - \frac{t_1}{RC}Ln(e)$$

$$CADEO \neq Ln2 - \frac{t_1}{RC}$$

$$t_1 = RC.Ln2$$

b. Calculate the value of C knowing that $t_1 = 1.4ms$

$$t_1 = RC.Ln2$$

$$C = \frac{\tau_1}{R. Ln2}$$

$$C = \frac{1.4 \times 10^{-3}}{2000.Ln2}$$

Be Smart $1 \times 10^{-6} \text{F/Y}$

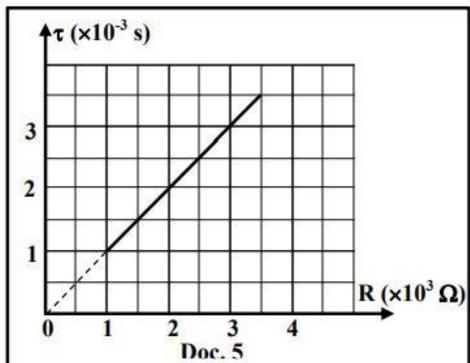
8.To verify the value of C, we vary the value of R.

Be Smart ACADEMY

Document 5 represents τ as a function of R.

a. Show that the shape of the curve in document 5 agrees with the expression of τ obtained in part 3. b. Using the curve of document 5,

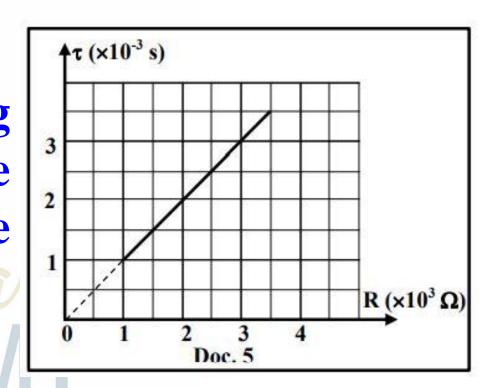
determine again the value of C.



Be Smart ACADEMY

a. Show that the shape of the curve in document 5 agrees with the expression of τ obtained in part.

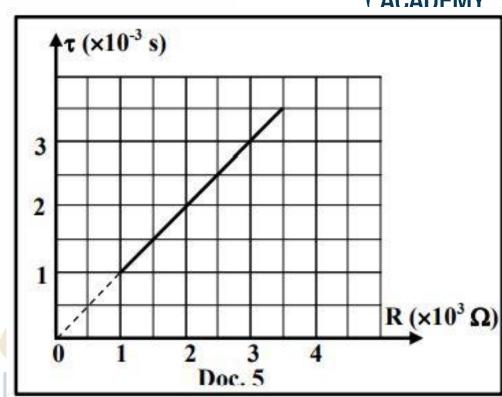
The curve is a straight line passing through the origin with a positive slope, then it agrees with the expression $\tau = RC$.



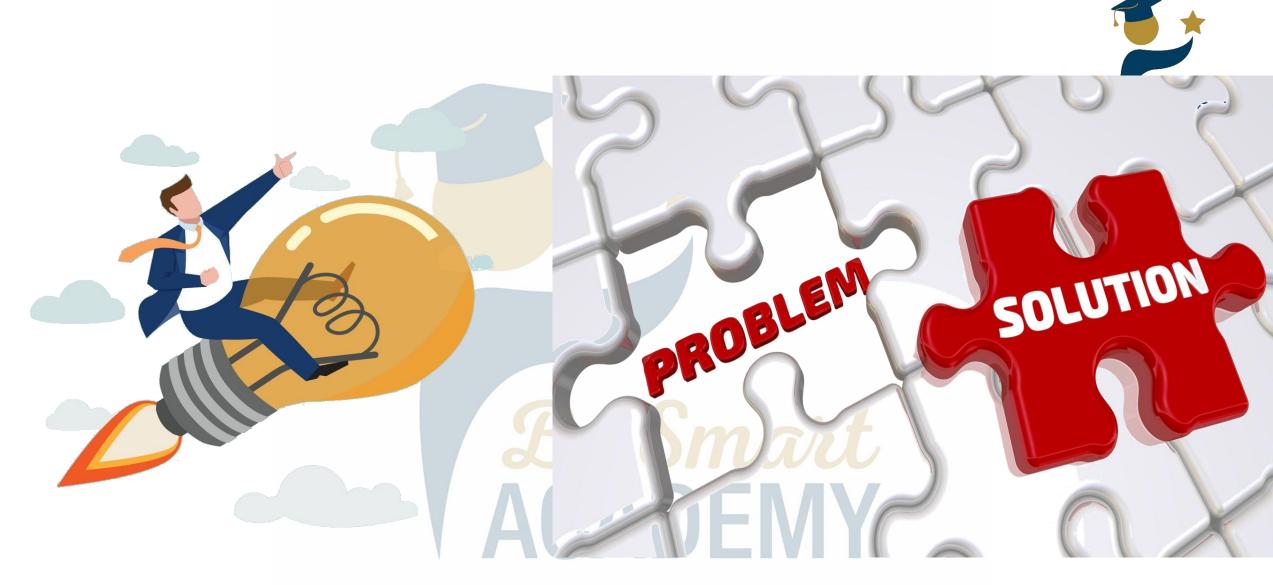
b. Using the curve of document 5, determine again the value of C

$$Slope = C = \frac{\tau_2 - \tau_1}{R_2 - R_1}$$

$$C = \frac{(2-1)\times 10^{-3}}{(2-1)10^3}$$







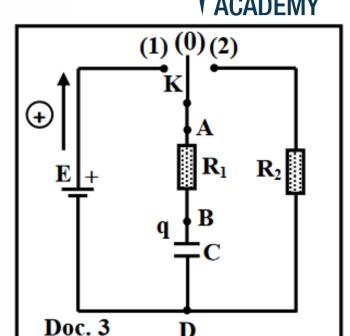
Think then Solve

We set up the circuit of document 3 that includes:

- an ideal battery of electromotive force E = 10V.
- two resistors of resistances $R_1 = R_2 = 4K\Omega$.
- a capacitor of capacitance C and a switch K.

Charging the capacitor:

The switch K is initially at position (0) and the capacitor is uncharged.



At the instant $t_0 = 0$, K is turned to position (1) and the charging process of the capacitor starts.

At an instant t, plate B of the capacitor carries a charge q and the circuit carries a current i.

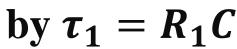
An appropriate device allows us to display the voltage u_{AB}

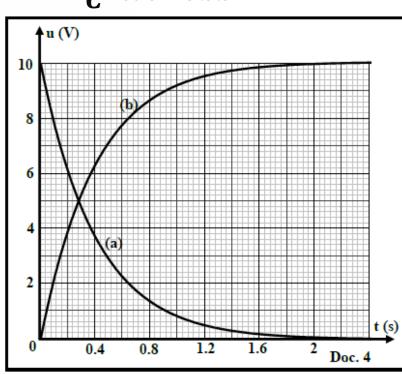
 $=u_{R1}$ across the resistor and the voltage $u_{BD}=u_{C}$ across

the capacitor.

Curves (a) and (b) of document 4 show these voltages as functions of time.

- 1.1) Curve (a) represents u_{R1} and curve (b) represents u_C . Justify
- 1.2) The time constant of this circuit is given





1.2.1) Using document 4, determine the value of τ_1 .

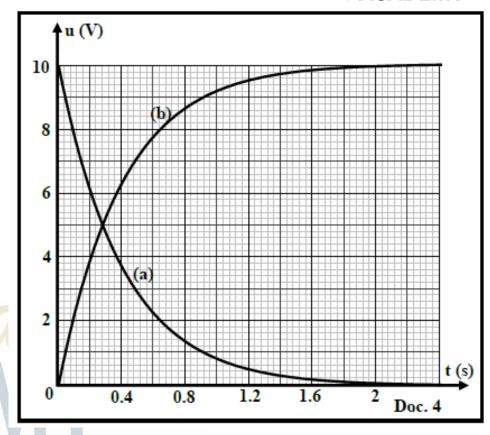
- 1.2.2) Deduce the value of C.
- 1.3) Calculate the time $\langle t_1 \rangle$ needed by the capacitor to practically become completely charged

1.1) Curve (a) represents u_{R1} and curve (b) represents u_{C} .

Justify.

Curve (a): $u_{R1} = R_1 i$ is directly proportional to the current in the circuit.

During the charging process the current decreases so u_{R1} decreases.



Curve (b): $u_{BD} = u_C$, During charging process q increases so u_C increases.

$$E=10V, R_1=R_2=4K\Omega$$

- 1.2) The time constant of this circuit is given is $\tau_1 = R_1 C$
- 1.2.1) Using document 4, determine the value of τ_1 .

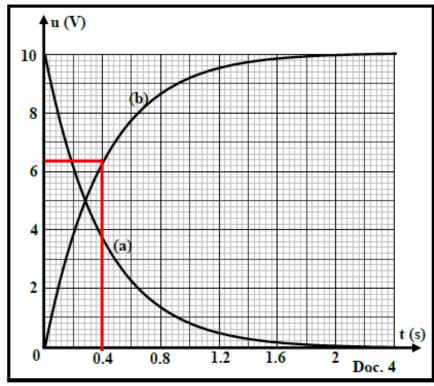
At
$$t = \tau_1$$
:

$$u_C = 0.63 \times E$$

$$u_C = 0.63 \times 10 = 6.3V$$

$$ACADFM$$

Then: $\tau_1 = 0.4 sec$



$E=10V, R_1=R_2=4K\Omega$

1.2.2) Deduce the value of C.

$$\tau_1 = R_1 C$$

$$C = \frac{0.4}{4000}$$

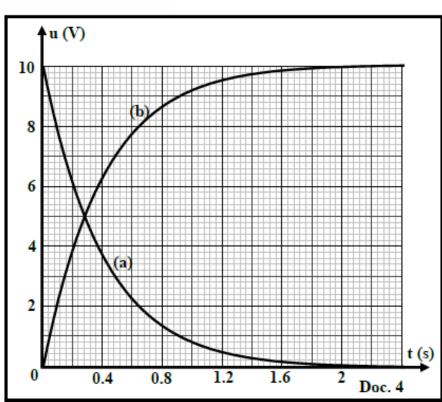
$$\mathbf{C} = \mathbf{1} \times \mathbf{10}^{-4} \mathbf{\mathit{F}}$$

become

1.3) Calculate the time (t_1) needed by the capacitor to practically become completely charged.

The capacitor to practically completely charged at $t_1 = 5\tau_1$

$$t_1 = 5 \times 0.4$$



$$t_1=2s$$

Be Smart

2) Discharging the capacitor:

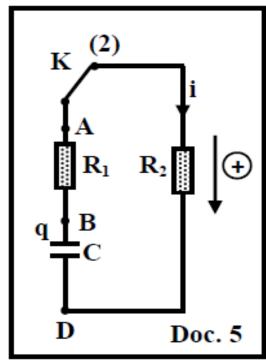
The capacitor is completely charged. At an instant taken as a new initial time $t_0 = 0$, the switch K is turned to position (2), and the capacitor starts discharging through the

resistors of resistances R_1 and R_2 .

At an instant t the circuit carries a current i (Doc. 5).

2.1) Show, using the law of addition of voltages, that the differential equation which governs $u_{\mathcal{C}}$ is:

$$RC\frac{du_C}{dt} + u_C = 0$$
 where $R = R_1 + R_2$



- 2.2) The solution of this differential equation is of the form:
- $u_C = Ee^{\overline{\tau_2}}$, where τ_2 is the time constant of the circuit of document 5. Determine the expression of τ_2 in terms of R and C.
- 2.3) Verify that the time needed by the capacitor to practically become completely discharged is $t_2 = 5\tau_2$.
- 3) Duration of charging and discharging the capacitor Show, without calculation, that $\langle t_2 \rangle$ is greater than $\langle t_1 \rangle$.

2.1) Show, using the law of addition of voltages, that the

differential equation which governs $u_{\mathcal{C}}$ is:

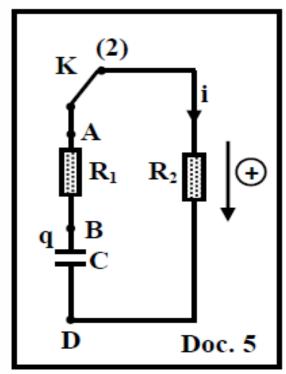
$$RC\frac{du_C}{dt} + u_C = 0$$
 where $R = R_1 + R_2$

$$u_C = u_{R1} + u_{R2} \quad \Longrightarrow \quad u_C = R_1 i + R_2 i$$

$$u_C = (R_1 + R_2)i \implies u_C - (R_1 + R_2)i = 0$$

$$i = -\frac{dq}{dt}$$
 and $q = Cu_C \rightarrow Ai = -C\frac{dU_C}{dt}$

$$u_C + (R_1 + R_2)C\frac{du_C}{dt} = 0$$



2.2) The solution of the differential equation is $u_C = Ee^{\frac{-t}{\tau_2}}$, where τ_2 is the time constant of the circuit.

Determine the expression of τ_2 in terms of R and C.

$$u_{C} = Ee^{\frac{-t}{\tau_{2}}} \implies \frac{du_{C}}{dt} = -\frac{E}{\tau_{2}}e^{\frac{-t}{\tau_{2}}}$$

$$E.e^{\frac{-t}{\tau_{2}}} - RC\frac{E}{\tau_{2}}e^{\frac{-t}{\tau_{2}}} = 0$$

and $\frac{du_{C}}{du_{C}}$ **Subsitute** $u_{\mathcal{C}}$ differential equation

$$u_C + RC. \frac{\mathrm{d}u_C}{dt} = 0$$

$$E.e^{\frac{-t}{\tau_2}}-RC\frac{E}{\tau_2}e^{\frac{-t}{\tau_2}}=0$$

$$E.e^{\frac{-t}{\tau_2}}\left[1-\frac{RC}{\tau_2}\right]=0$$

$$1 - \frac{RC}{\tau_2} = 0 \qquad \tau_2 = RC$$

Be Smart ACADEMY

2.3) Verify that the time needed by the capacitor to practically become completely discharged is $t_2 = 5\tau_2$.

$$u_{\mathcal{C}} = Ee^{\frac{-t}{\tau_2}}$$

At $t_2 = 5\tau_2$:

$$u_{\mathcal{C}} = Ee^{\frac{-5\tau_2}{\tau_2}}$$

$$u_C = Ee^{-5} \cong 0$$

Since at t_2 , the voltage across the capacitor is zero, then; the capacitor is practically completely discharged

3) Duration of charging and discharging the capacitor Show, without calculation, that $\langle t_2 \rangle$ is greater than $\langle t_1 \rangle$.

$$t_2 = 5(R_1 + R_2)C$$

$$t_1 = 5R_1C$$

Since
$$(R_1 + R_2) > R_1$$
 then $t_2 > t_1$

Be Smart ACADEMY

